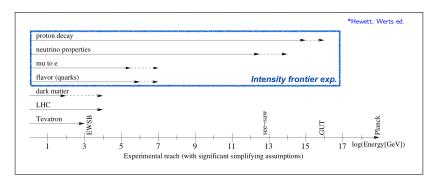
Stabilised Wilson Fermions for the Intensity Frontier

Anthony Francis*, Patrick Fritzsch, Martin Lüscher and Antonio Rago

2019 Lattice X Intensity Frontier Workshop Brookhaven National Laboratory, 24.09.2019

The Intensity frontier



- Fundamental physics with intense sources and ultra-sensitive detectors.
- Precision studies of the SM and beyond.
- Greatest possible beam intensities of neutrinos, electrons, muons, photons and hadrons.
- Experimental programs FRIB, Muon G-2, Project X, EIC (@BNL) ...

*Hewett, Werts ed., https://www.slac.stanford.edu/econf/C1307292/docs/Intensity-2.pdf

At the intensity frontier "lattice QCD plays a crucial role"

*Hewett, Werts ed., https://www.slac.stanford.edu/econf/C1307292/docs/Intensity-2.pdf

Example calculations are

- $(g-2)_{\mu}$: Resolve tension with SM, new physics
- ► Flavour physics: Rare decays (K, D, B), cp violation
- Multi-nucleons: Nuclear physics
- ► Hadron structure: Proton spin, radius, magnetic moment, ...
- ▶ Parton distribution functions: Proton structure

A technical frontier for lattice QCD

Addressing their systematics we face different challenges:

- $(g-2)_{\mu} \rightsquigarrow$ fine, light and large lattices.
- ► Flavour physics → very fine lattices.
- ► Multi-nucleons → large and coarse lattices.
- ▶ Hadron structure \rightsquigarrow low Q^2 , i.e. large, coarse, light lattices.
- ▶ PDFs \leadsto large Q^2 , i.e. fine and light lattices.
- A common requirement are large lattice volumes.
- **o But**, as m_{π} ↓ and/or V ↑ the spectral gap spec(D) ↓
- ightarrow Algorithmic instabilities hamper the generation of configurations and can affect observables.
- Here we aim to provide some remedies and tools to ameliorate and overcome these problems with a focus on Wilson-Clover fermions.

Remedies and tools

An often used treatment to stabilise calculations is **smearing**.

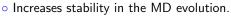
- o Gauge fields are smoothed in an iterative procedure.
- Degree of smoothing is controlled by smearing parameters.

Here we present extra/alternative tools:

Exponentiation of the usual Clover term.

Reduces fluctuations induced by the Clover.

Implementation of the Stochastic Molecular Dynamics algo.



Use of V-independent norm and quadruple precision numbers.

Guarantee of required numerical precision.

Stabilised Wilson fermions are the combination of the last three.

Disclaimer: Some components not new, references given.

$\mathcal{O}(a)$ -improvement revisited

• The $\mathcal{O}(a)$ -improved Wilson Dirac operator is:

$$D = \frac{1}{2} \Big[\, \gamma_\mu \Big(\nabla_\mu^* + \nabla_\mu - \mathsf{a} \nabla_\mu^* \nabla_\mu \Big) \, \Big] + c_{SW} \frac{\mathsf{i}}{\mathsf{4}} \sigma_{\mu\nu} \hat{\mathcal{F}}_{\mu\nu} + \mathsf{m}_0$$

Classifying the lattice points as even/odd one may write

$$D = \begin{pmatrix} D_{ee} & D_{eo} \\ D_{oe} & D_{oo} \end{pmatrix}$$

with diagonal part

$$D_{ee} + D_{oo} = 4 + m_0 + c_{SW} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}$$

• E/O-preconditioned form:

$$\hat{D} = D_{ee} - D_{eo}(D_{oo})^{-1}D_{oe}$$

$\mathcal{O}(a)$ -improvement revisited: Focus on the Clover

- At tree-level $c_{SW}=1$ and grows monotonically with g_0^2 .
 - \rightarrow $c_{SW} \sim$ 2 on coarse lattices.
- Pauli term can be fairly large, particularly on coarse lattices, saturating the bound:

$$\left\|\frac{i}{4}\sigma_{\mu\nu}\hat{F}_{\mu\nu}\right\|_{2} \leq 3$$

- o Positive and negative EV of the Pauli term are equally distributed:
- $\rightarrow D_{oo}$ is not protected from arbitrarily small EV.
- → Especially so for small masses and rough gauge fields.
- \rightarrow E/O-preconditioning can fail.
 - Probability to do so grows with larger lattice volumes.
- \rightarrow Irrespective of E/O-prec. these fluctuations can spoil the calculation.
- → (Coarse, very) large lattice volumes or masterfields not feasible.

✓ Exponentiated Clover

$\mathcal{O}(a)$ -improvement revisited: Exponentiating the Clover

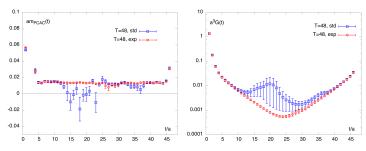
• Alternative definition for the $\mathcal{O}(a)$ -improved Wilson Dirac operator:

$$D_{\text{ee}} + D_{oo} = (4 + m_0) \exp\left[\frac{c_{SW}}{4 + m_0} \frac{i}{4} \sigma_{\mu\nu} \hat{F}_{\mu\nu}\right]$$

- ▶ Definition coincides with previous definition at leading order in a.
- Diagonal part of the Dirac operator is positive definite and safely invertible.
- ▶ E/O-preconditioning becomes unproblematic.
- ▶ Also, $\det D = \det \hat{D}$ up to a field-independent proportionality constant.

Exponentiated Clover: Quenched theory

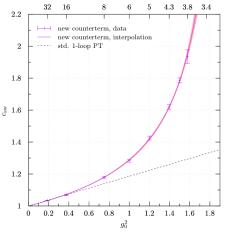
- Initial tests in quenched theory (Wilson gauge):
- \rightarrow Non-perturbatively tuned c_{SW} in the massless SF scheme.
- ightarrow Pion correlators at $\beta=$ 6.0, κ tuned to match Clover and eClover, configurations are identical.



- Initial tests show promise:
- \rightarrow Some indications that fluctuations indeed are reduced.
- → Need tests and verification in full QCD.

Exponentiated Clover: Full QCD, tuning c_{SW} in the SF

- o To test viability and features in full QCD we run in the following:
- $\rightarrow n_f = 2 + 1$ QCD with the Lüscher-Weisz gauge action.
- \rightarrow Non-perturbatively tune c_{SW} in the massless SF scheme.

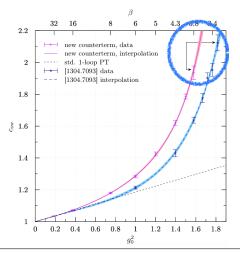


o eClover:

$$M_0 \exp \left[rac{c_{SW}}{M_0} rac{i}{4} \sigma_{\mu
u} \hat{F}_{\mu
u}
ight]$$

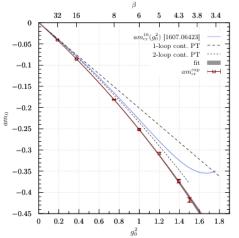
- \rightarrow These runs use the HMC.
- ightarrow Stable inversions of D_{oo} (1M traj., au=2).

Exponentiated Clover: c_{SW} comparison



- Arrows indicate equal lattice spacing $a[fm] \simeq 0.095$
- \rightarrow For equal lattice spacing $c_{SW}^{\text{eClov}} < c_{SW}^{\text{Clov}}$.

Exponentiated Clover: Critical mass

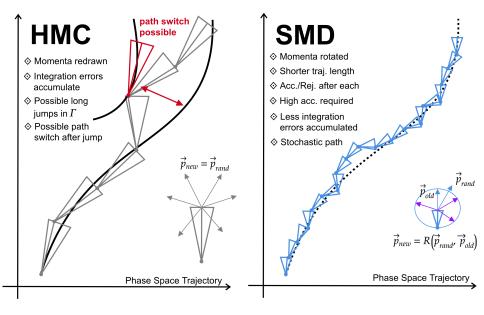


Critical mass:

$$am_{
m crit} = rac{1}{2\kappa_{
m crit}} - 2$$

 \rightarrow We observe a monotonic dependence on g_0^2 with the eClover.

Stochastic Molecular Dynamics



Generally: More spikes in ΔH means longer autocorrelation times.

Stochastic Molecular Dynamics (SMD) algorithm

A. M. Horowitz '85, '87, '91; K. Jansen, C. Liu hep-lat/9506020

o Basic components: gauge links $U(x, \mu)$, momentum $\pi(x, \mu)$, pseudo-fermion $\phi(x)$ and action $S_{pf} = \phi(D^{\dagger}D)^{-1}\phi$.

Update cycle

▶ Refresh $\pi(x,\mu)$ and $\phi(x)$ by a random field rotation

$$\pi \to c_1 \pi + c_2 v$$
 , $\phi \to c_1 \phi + c_2 D^{\dagger} \eta$

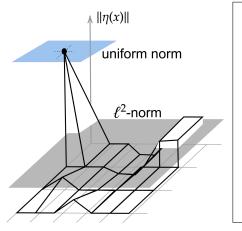
- \rightarrow v and η random normal distributed
- $\rightarrow c_1^2 + c_2^2 = 1$
- $ightarrow c_1 = e^{-\epsilon \gamma}$, where ϵ is the MD integration time and γ is a friction parameter
- ► MD evolution (short)
- Accept/Reject-step (makes the algorithm exact)
- ► Repeat 🔿

Notes

- ▶ At fixed ϵ and large γ the SMD coincides with the HMC.
- ▶ For small ϵ the SMD can be shown to be ergodic* and to converge to a unique stationary state simulating the canonical distribution.
- ▶ When configurations are rejected the momentum is reversed and the trajectory tends to backtrack.
 - ightarrow Rejections should ideally occur only at large distances in au.
- ▶ $\Delta H \propto \sqrt{V}$ implies integration has to be made more precise with $V \uparrow$ → Use high order integration rules.
- SMD has shorter autocorrelation times**. This (largely) compensates the longer time per MDU compared to the HMC.
 - ▶ The SMD gives a reduction of unbounded energy violations $|\Delta H| \gg 1$.

Uniform norm, quadruple precision

Further algorithmic improvements



 \circ Solver stopping criterion: Convergence when $\tilde{\psi}$ satisfies

$$\|\eta - D\tilde{\psi}\|_2 \le w\|\eta\|_2$$

with:
$$\|\eta\|_2 \propto V$$

- → Possibly local fluct. missed
- → But forces derived locally.
- → Uniform norm:

$$\|\eta\|_{\infty} = \sup_{x} \|\eta(x)\|_{2}$$

 \rightarrow Insurance also for current V.

o Accept/Reject:

$$\Delta H \propto \epsilon^p \sqrt{V}$$

- → Summing over all lattice points can cause accumulation errors
- → Use quadruple precision in global sums.

Running $n_f = 2 + 1$ full QCD

- \circ In the following we perform: In situ calculations using all stabilising measures and the non-perturbatively tuned c_{SW} .
- Chiral trajectory is set via:

$$\phi_4 = 8t_0 (rac{1}{2} m_\pi^2 + m_K^2) = 1.115 = {\sf const.} \propto {\sf Tr}[M_q]$$

<i>a</i> [fm]	$L^3 \times T$	$m_{\pi}[MeV]$	$m_K[MeV]$	$m_{\pi}L$	ВС	status
0.095	$32^{3} \times 96$	410	410	6.3	Р	done
	$32^3 \times 96$	294	458	4.5	Ρ	done
	$32^3 \times 96$	220	478	3.4	Ρ	done
	$64^{3} \times 144$	135	494	4.2	Ρ	planned
0.064	$48^{3} \times 96$	410	410	6.4	Ρ	running
0.055	$48^{3} \times 96$	410	410	5.5	0	running

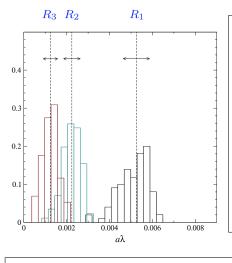
Running $n_f = 2 + 1$ full QCD

• Parameters at $a[fm]=0.095~(\beta=3.8)$: $\gamma=0.3,~\epsilon=0.31,~2$ levels of OMF-4, $N_{pf}\leq 8,~deg(R)\leq 10$

L	.abel	$m_{\pi}[MeV]$	P_{acc}	$P(\Delta H \ge 2)$
	R1	410	97.5%	0.15%
	R2	294	98.6%	0.15%
	R3	220	98.2%	0.05%

- The runs show no issues with stability (also $\beta = 4.0, 4.1$).
- \circ Physical m_{π} seems possible at coarse lattice spacing.
- \circ Lowest eigenvalue of $\sqrt{D^\dagger D}$ measured with less than 0.5% uncertainty.
- Even coarser lattice spacings, a[fm] > 0.095, seem possible.

Spectral gap of the Dirac operator

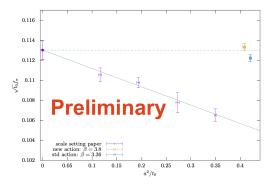


- Smallest eigenvalue behaves as:
- $ightarrow a\lambda = \min \left[\operatorname{spec} \left(D^{\dagger} D \right)^{\frac{1}{2}} \right] \ a\lambda \left[\operatorname{MeV} \right] \in \left[0.001, 2 \right]$
- ightarrow Median $\mu \propto Z m_q$
- ightarrow Width $\sigma\downarrow$ for $m_\pi\downarrow$ \leadsto similar to $n_f=2^*$
- ightarrow Empirically: $\sigma \simeq a/\sqrt{V}^*$
- *L. Del Debbio et al. hep-lat/0701009

- o R1, R2, R3 have about equal computational cost here.
 - \rightarrow Cost of bigger κ_l is largely compensated by the smaller κ_s .

Towards quantifying cutoff effects

- Scaling tests are still ongoing, all results are preliminary.
- Here: Indications and exploratory studies of cutoff effects.

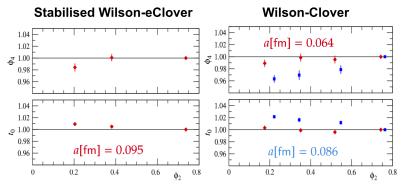


- \circ Comparison to symmetric point data from M. Bruno et al. [1608.08900], where Z_A is from the chirally rotated SF M. Dalla Brida et al. [1905.05147].
- o Our points (traditional=blue, stabilised=orange) use Z_A determined via fermion flow M. Lüscher [1302.5246].

Towards quantifying cutoff effects

- \circ Note: A fixed bare quark mass trajectory shows deviations of $\mathcal{O}(am)$ for a given observable. M. Bruno et al. [1608.08900]
- Opportunity to test and compare for:

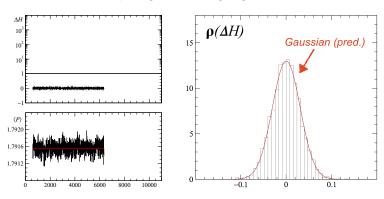
$$\phi_4 = 8t_0 \Big(\frac{1}{2} m_\pi^2 + m_K^2 \Big)$$
 and $\phi_2 = 8t_0 m_\pi^2$



CLS runs: H101,H102,C101 (blue), N202,N203,N200,D200 (red)

Runs at finer lattice spacing, a[fm] = 0.064

• Runs at finer lattice spacing are still ongoing.

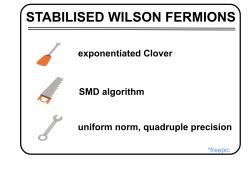


o On large lattices, when integration of the MD eqs. is stable:

$$ho(h) \sim \exp\left[-rac{(\Delta H - rac{1}{2}\sigma^2)^2}{2\sigma^2}
ight] \,, \,\, ext{with} \,\, \sigma \,\, ext{from} \,\, \langle P_{acc}
angle = 1 - rac{\sigma}{\sqrt{2\pi}} + \mathcal{O}(\sigma^3)$$

Prospects and summary

- Intensity frontier poses unique challenges to the lattice community.
- Larger volumes, finer lattice spacings need to be reached.
- Algorithmic developments will play an important role.



- We presented a toolkit to stabilise Wilson fermions, making them fit for the intensity frontier and beyond (e.g. masterfield simulations).
- So far we see:
 - Good behaviour, also for (light,) coarse lattices.
 - Measures do not introduce a significant runtime deficit.
 - ▶ No indication of unusually large lattice effects.

→ eClover hints at an advantage.

o Ongoing: Further tests of continuum limit scaling behaviour.

More stable calculations in larger volumes possible.

Exciting prospects and an interesting challenge!

Thank you for your attention.